
www.manaraa.com

DISP: Practical, Efficient, Secure and Fault Tolerant
Data Storage for Distributed Systems

Daniel Ellard
Harvard University

ellard@eecs.harvard.edu

James Megquier
Gnuterra Corporation

jmegq@gnuterra.com

Abstract

We present DISP, a practical, efficient and se-
cure client/server protocol for data storage and
retrieval in a distributed environment and show
how this protocol can tolerate Byzantine fail-
ure. We discuss variations on DISP that can
be used as building blocks for different appli-
cations, and measure the performance of DISP
on commodity hardware.

1 Introduction

This paper describes DISP, the Distributed
Information Storage Protocol. DISP is a
practical, efficient, secure and fault-tolerant
client/server protocol for distributed data stor-
age.

DISP is practical because it is simple to de-
scribe, easy to implement, and makes reason-
able assumptions about the capabilities of the
client and server. DISP is efficient in terms of
network traffic; even in the presence of fail-
ures, the protocol requires transferring only
marginally more than

�
bytes in order to re-

trieve an object of size
�

. DISP is secure be-
cause all of the data is stored and transferred in

an encrypted form; compromise of the network
or a server reveals none of the data. DISP is
also able to ensure integrity of the data so that
the data can be retrieved correctly even when
servers have been corrupted.

DISP is novel in two ways: first, it requires
no server-to-server or client-to-client commu-
nication. The only communication is between
the clients and the servers. Protocols that re-
quire server-to-server communication in order
to achieve consensus or agreement do not scale
well; as the number of servers grows, the com-
munication overhead and complexity of these
protocols become daunting. In contrast, the up-
per bound on the number of messages required
by each DISP operation is proportional to the
number of servers, even in the worst case. The
fact that DISP servers never communicate also
means that it is easier to isolate server failures
and prevent a Byzantine server from influenc-
ing correct servers.

The second novel aspect of DISP is its sim-
plicity. DISP sacrifices some functionality and
a small degree of performance and fault toler-
ance in favor of simplicity and ease of imple-
mentation. Garay et al. [8] and Alon et al. [1]
describe systems that address many of the same
issues as DISP and share some of its charac-
teristics, but these systems use protocols and
encoding schemes that are significantly more

www.manaraa.com

complex than DISP. Although these systems
have desirable properties, we believe that their
implementation would be substantially more
difficult than that of DISP.

DISP manages the storage of immutable
data objects by distributing the responsibil-
ity of storing each data object among a pool
of autonomous and independently functioning
servers. DISP does not implement the seman-
tics of a file system, although it may be used as
the storage manager for a distributed file sys-
tem based on immutable storage, such as Venti
[13]. Although DISP does not permit mutable
objects, it does support versioning – there may
be any number of versions of each object, and
all versions are accessible.

Another important aspect of DISP is that it is
parameterized; rather than being a single proto-
col tuned for one type of application, it is really
a family of protocols that may be used for many
applications.

DISP is scalable because nearly all of the
computation required by the protocol is per-
formed by the clients. We envision that clients
will greatly outnumber servers, and therefore
DISP is designed to minimize the amount of
per-client overhead and computation required
by the server.

DISP satisfies the BASE semantics described
by Fox et al. [7]. Erasure-replication of data
and tolerance of Byzantine server failures allow
DISP clients to access the system as a whole
even in the face of a large number of partial fail-
ures. Permission to write to servers is granted
in a soft-state manner; if a client fails to com-
plete the write protocol for any reason, it may
simply initiate another write. Once a write has
completed successfully, all clients will see a
consistent view of the new version of the ob-
ject.

In terms of the CAP principle [6], DISP sac-
rifices perfect consistency for high availability
and resilience in the face of network partitions.
Objects stored in a DISP system are accessible
as long as a sufficient number of DISP servers
that hold data related to the object are reach-
able and correct (and this number is a parameter
chosen by the writer), and new objects may be
added to the system as long as any subset con-
taining this number of correct servers is reach-
able.

The rest of this paper is organized as follows:
in Section 2 we describe the basic protocol and
show how to extend this protocol so it can han-
dle Byzantine failures in Section 3. Section 4
discusses the efficiency of DISP, and Section
5 gives example applications. In Section 6 we
describe our implementation and benchmark its
performance. In Section 7 we discuss related
work and then conclude in Section 8.

2 An Overview of DISP

DISP is based on the INDIA protocol [5],
which in turn is based on ideas from Rabin’s
description of possible applications of the In-
formation Dispersal Algorithm (IDA) [14].

DISP is a client/server protocol. All of the
data is stored on the servers. Unlike contem-
porary peer-to-peer (P2P) systems, which must
be prepared to handle frequent changes in their
constituency as peers enter and leave the sys-
tem, we assume that the servers are available
and stable most of the time. Therefore our pro-
tocol is optimized for the case where servers
are available and behave correctly, although we
do not require that this is always true. Clients,
on the other hand, are not dedicated to the sys-
tem, and may enter and leave the system at any
point. The sets of client and server machines

www.manaraa.com

may overlap.

We assume that there exists a secure net-
work infrastructure that allows participants in
the protocol to perform mutual authentication
and establish encrypted communication chan-
nels. We also assume that each server is able to
sign messages in a manner that can be verified
by any client or server.

Each data object is stored on a set of DISP
servers called a domain. DISP supports any
number of server domains, and each domain
may support any number of clients.

In contrast to most P2P systems, which are
designed to handle dynamic membership, DISP
does not use a routing protocol to find servers.
Instead, all hosts that are members of a DISP
domain are given a DNS alias based on the
name of the domain, and clients discover the
list of servers in a domain via Secure DNS.

We begin with a description of IDA, which
we use as the basis for our data encoding. We
then introduce the central ideas of DISP by
describing a simplified version of the proto-
col. We then present the extensions that com-
plete the full protocol and show how it tolerates
Byzantine failures.

2.1 The Information Dispersal Al-
gorithm

The underlying representation scheme used by
our system is Rabin’s Information Dispersal
Algorithm (IDA) [14]. IDA is an erasure code
(also known as a forward error-correcting code)
in which the original data is stored as a set of
mutually redundant shares and then dispersed
to different locations for safe storage.

The IDA coding scheme is analogous to the
coding scheme used in RAID-5, where enough
data to fill � disks can be encoded and stored
on � ��� disks in such a way that the data can
still be reconstructed if any single disk fails.
The essential difference between IDA and typ-
ical RAID coding schemes is that RAID can
usually tolerate the loss of only a single share
of the data. IDA uses a more general scheme
that permits the construction of an arbitrarily
large number of distinct shares. We will use� �����	� -IDA to denote an IDA code for which
� shares may be created for any data object,
and any subset of � of these shares are suffi-
cient to reconstruct the original data.

An
� �
���	� -IDA code has two properties that

are relevant to our protocol:

1. If the original data has size
�

, then each
share of an

� �
���	� -IDA encoding of the
data has size

��� � .

Since each share has size
��� � , and �

shares are necessary to reconstruct, the to-
tal size of the shares needed to reconstruct
an object of size

�
is � �� � � �

.

2. An
� �
����� -IDA code exists for any � ���� (where � is prime and �����) and � as

long as � ��� .

If � is 1, then the IDA code degenerates
into simply mirroring the data � times.� ���������	� -IDA codes are isomorphic to
parity or checksum-based codes, such as
those typically used by RAID. The bene-
fit of IDA comes when we desire � to be
larger than � ��� ; it is possible to con-
struct an IDA code with any desired de-
gree of redundancy.

Both of these properties are proven in the
original description of IDA [14].

www.manaraa.com

Step 1: Obtaining a WriteHandle. The client sends a request to an arbitrary server in the do-
main, asking to create an object with a specific name, IDA code, and other attributes. If the
request is valid, the server chooses a unique DISP object identifier (DOID) for the object,
creates a WriteHandle for the DOID, and returns it to the user.

Step 2: Distributing the Shares. The client prepares shares of the object and sends the Write-
Handle and one share to each server in the domain. Each server stores the share and acknowl-
edges its receipt.

Step 3: Committing the Shares. Once the client has received acknowledgments from the distri-
bution of its shares, it sends a request (which includes the WriteHandle) to each server to
commit the share. Each server acknowledges when its share is committed.

Figure 1: The basic DISP write protocol.

2.2 The Write Protocol

The DISP write protocol consists of three steps,
which are essentially a two-phase commit pro-
tocol with the client serving as the leader, as
illustrated in Figure 1.

A WriteHandle is a certificate, signed by a
server, that authorizes a specific client to store
a share of the object, specified by the DOID, on
each server in the domain. A WriteHandle in-
cludes the name of the object and any other ob-
ject attributes specified by the client as well as
the identity of the requesting client, the server,
a per-server generation number, the IDA code,
and the time.

Note that the IDA encoding is chosen by the
writer, so the writer is free to choose what-
ever encoding they feel is most the appropriate
for each object; all DISP servers must accept
shares that use any code that is part of the DISP
specification.

It is essential that the choice of server in the
first step of this protocol is arbitrary. A Write-
Handle signed by any server in the domain will
be honored by any other server in that domain.
Therefore, if any server that the client chooses

is unavailable or incapable of granting a Write-
Handle, the client is free to try another.

It is also important that the WriteHandle and
DOID are transparent, so that the client can ver-
ify that the WriteHandle it receives in the first
step corresponds to the object it requested. It is
also essential that the WriteHandle contain the
name of the client and be signed by the server.
Because each party authenticates each commu-
nication, the servers will only accept shares
from the client that was initially granted the
WriteHandle. (A side-effect of this rule is that
WriteHandles are usable only by a single client
in the current specification of DISP; they may
not be delegated or shared between clients.)

The client may attempt to subvert the proto-
col by requesting a WriteHandle with invalid
attributes (such as ownership by a different
client). A correct server will check the cre-
dentials of the client and only create a Write-
Handle with the valid attributes. If the server
and the client conspire to create a WriteHandle
with invalid attributes, the resulting WriteHan-
dle will not be accepted by any of the correct
servers in the second step; no correct server
accepts shares unless the WriteHandle has at-
tributes that are valid for the client attempting

www.manaraa.com

the write. Each server can check the signature
of the server who granted the WriteHandle to
ensure that it has not been altered, and since
clients must authenticate themselves to each
server to which they write shares, each server
can verify that the client attempting to use the
WriteHandle is indeed the client to which the
WriteHandle was granted.

In addition to resisting attacks from the
clients, the basic write protocol is also resilient
against several kinds of misbehavior among the
servers. For example, the server contacted in
the first step may refuse to grant a WriteHan-
dle, attempt to delay the client by responding
slowly, or return a WriteHandle for an object
with different attributes than requested. The
client can detect the latter situation by inspect-
ing the WriteHandle to check that it matches
the request. In all three situations, the client
is free to repeat the request or try a different
server. A correct server will respond quickly
with a WriteHandle, and any WriteHandle cre-
ated by any correct server will be accepted by
all other correct servers. In the worst case, the
client might not discover that the WriteHandle
is invalid until its attempts to write shares to
other servers are rejected.

A server cannot prevent a client from cre-
ating an object by creating an object with the
same DOID (possibly with different attributes
or different data). It may create an object
with the same name, but because each DOID is
marked with the identity of the writer (and cor-
rect servers will only accept shares of that ob-
ject from that writer), it cannot create an object
with the same DOID. Since no correct server
will accept shares from a client other than the
client named in the DOID and WriteHandle,
the server cannot forge shares of the object and
send them to other servers; the worst it can do
is corrupt its own shares of objects.

2.3 The Read Protocol

The DISP read protocol consists of the two
steps illustrated in Figure 2. Note that objects
are created by name but shares may only be
referenced via their DOID, and that it is pos-
sible for different versions of an object to share
a name. When this happens, each server will
return a list of all of the DOIDs that match the
requested name and for which the client has au-
thorization to read. It is the responsibility of
the client to select the DOID of the version it
wishes to access.

It may happen that a server does not respond
quickly, or does not possess a share of the ob-
ject that the client desires. In either case, the
client may poll the other servers in the do-
main until it either finds enough shares to re-
construct, or discovers that no such object ex-
ists.

Note that DISP does not ensure that all ob-
servers of the system will see the same state,
although the system will converge over time.
Each client will observe a causally consistent
view of the servers, but depending on the order
in which the clients commit their shares or ask
for ReadHandles, two concurrent clients may
observe the system in different states. Clients
are free to coordinate their activity so as to en-
sure that they observe the same contents of a
DISP domain, but this protocol is not part of
DISP at this time.

2.4 Other Operations

DISP also includes a delete operation, which
removes an object from the system. (Note that
the DOIDs are chosen in such a way that a new
object will never share the DOID of any object,
including deleted objects.)

www.manaraa.com

Step 1: Requesting ReadHandles. The client sends a request to a server in a domain, asking for
the ReadHandles of objects of the given name for which the server has a share. A server will
only return ReadHandles corresponding to objects for which it has a complete and committed
share.

Step 2: Gathering the Shares. The client sends the ReadHandle to � of the servers, and each
server replies with their share of the corresponding object. As soon as � shares have arrived,
the client reconstructs the object.

Figure 2: The basic DISP read protocol.

DISP includes two mechanisms that allow
new servers to enter a domain and acquire
shares of existing objects; which is used is a
property of each object. The first method has
the original writer take responsibility for creat-
ing the new shares, but in the second the ability
to create new shares of an object is delegated
to a trusted third party. The first method has
the advantage that the client does not need to
delegate its authority, but has the disadvantages
that it requires the client to check periodically
for new servers and that the client must perform
a potentially huge amount of work. Further dis-
cussion of these protocols and their tradeoffs is
part of our future work.

3 Tolerating Byzantine Fail-
ure

With the basic write protocol, the client will be
able to write an object using an (�
����� -IDA
code as long as at least � servers are available
and correct. Similarly, the basic read protocol
tolerates fail-stop failures as long as the number
of participating servers does not fall below � .
Unfortunately, the basic protocol does not tol-
erate Byzantine failure, even when more than
� servers are correct. A Byzantine server may
corrupt a share to prevent correct reconstruc-
tion, or may reveal the contents of the share

to an unauthorized party. In this section, we
show how to extend the basic protocol to ad-
dress these issues.

We assume that the writer uses an
� �����	� -

IDA code and that there are � � � servers
in the domain. We can extend our protocols to
handle � Byzantine failures, where ����� ��� .
Let � be the size of a quorum. The client trusts
any set of � servers who supply consistent in-
formation about their shares. It follows that
� � � in order to ensure that a reader can
find enough shares to reconstruct, and �	�
�
because otherwise � Byzantine servers could
form a quorum.

The number of failures tolerated is at a max-
imum when � � � � � � � � ���� . However, the
choice of � is made on a per-operation ba-
sis. Depending on the priorities of the client,
it might choose to disable fault tolerance alto-
gether, tolerate a small number of failures, or
pay the full cost of tolerating as many as ��� �����
failures.

3.1 Ensuring Share Integrity

In the simple protocol, a client reading an ob-
ject must trust that the shares returned by each
server are identical to the shares that were writ-
ten, and that those shares are mutually consis-

www.manaraa.com

tent. If one server returns a share that has been
modified in any way, the client has no way
to detect this modification. To compound this
problem, IDA shares are malleable and there-
fore a Byzantine server can alter the client’s
view of the data to a predictable value.

A common approach to the problem of data
integrity is the use of signatures: the writer
signs each share it creates, and each reader ver-
ifies the signature before accepting the share.
This method is well-suited for applications with
a small number of readers and writers, but does
not scale gracefully, because of the problems
associated with key management. For exam-
ple, if the writer’s signing key is compromised,
there is no easy way to revoke the key, issue a
new key, and update all of the relevant shares.
If the key is lost, there is no way to check the
signature at all.

Another approach is to store a message di-
gest of the original object with each share, so
that the reader can check whether the recon-
struction matches the original. Unfortunately,
this method is only able to detect when recon-
struction has failed and is not helpful in finding
corrupted shares – the only way to find the cor-
rect subset of shares is by trial and error.

To avoid both of these problems, we use an
approach based on the idea of check vectors as
proposed by Krawczyk [11]. We use a crypto-
graphic hash function to compute a check vec-
tor consisting of the message digests for ev-
ery share of the object and then store the check
vector with every share, and modify the recon-
struction step as shown in Figure 3.

Once the reader has � shares, reconstruc-
tion proceeds as normal. As long as there are
� � � and � � � , the reader will be able to
find the correct value of the check vectors and
thence find a set of � consistent shares and re-
construct. (The most that the Byzantine servers

can accomplish is to produce a group of � � �
consistent check vectors.)

One drawback with this approach is that
a mischievous server can cause the reader to
transfer a corrupt share in its entirety before
the reader can determine that the share is cor-
rupt and discard it in the third step. The root of
this problem is that a single bit error (in either
the check vector or the share) will invalidate the
entire share. To bound the amount of informa-
tion that can be invalidated by a single error, we
use a block-oriented variation of IDA and check
vectors. This makes it possible to isolate errors
and reduces the amount of new data requested
in the third step to a single block per error. A
Byzantine server can still cause the reader to do
extra work by adding errors to many blocks of
the share, but the client is also free to choose
which servers it uses, and therefore can adapt
to this situation by preferring to gather shares
in the first step from servers that have not re-
cently provided bad blocks.

3.2 Share Privacy via Keyless En-
cryption

The writer must also trust that the server does
not share information about its stored objects
with unauthorized parties. Even servers that be-
have correctly and are physically secure when
they are part of the system may divulge their se-
crets if an attacker can get a copy of their back-
ups or discarded storage disks [9].

The general solution to this problem is to en-
sure that the data is always encrypted before it
reaches storage. Unfortunately, implementing
this is non-trivial for a large-scale system, for
reasons similar to the problems of signatures:
the decryption key may be lost, or it may be
revealed. In the first situation, the data is lost

www.manaraa.com

Step 1: The reader gathers � check vectors from � servers.

Step 2: If the reader discovers that not all � check vectors are identical, it gathers additional check
vectors from other servers until it has � that match.

Step 3: The reader gathers � shares from the servers that provided the matching check vectors
and compares each to the corresponding element of the check vector. If it is a match, then
the share is retained. Otherwise, the share is discarded and the client requests a share from
another server. This process repeats until the client has � shares that match the check vector.

Figure 3: Reconstruction with check vectors, for an
� �
� �	� -IDA code and a quorum of size � .

forever. In the second case, the data may be
revealed to an unauthorized party. The com-
promised key must be revoked and the data re-
encrypted with a new key, which authorized
readers must then rediscover.

One method for defeating this attack is re-
place IDA with Shamir’s secret-sharing scheme
[16]. In this context, Shamir’s method for shar-
ing secrets is essentially to pad the data with
randomly selected values and then use a slight
variation of IDA to encode the result. Each re-
sulting share reveals no information whatsoever
about the value of the original data. Unfortu-
nately, the amount of padding required is pro-
hibitive; each of the resulting shares is the same
size as the original data, so the total size of the
shares needed to reconstruct an object will be
� times larger than the object. More recent
secret-sharing schemes, such as those described
by Garay et al. [8], reduce this overhead con-
siderably, but still increase the storage and net-
work requirements. At this time, we feel that
it is better to trade CPU for disk and network
bandwidth.

We employ a very different solution: we en-
crypt each share with a randomly selected key,
and encode the keys with a

� � ���	� -IDA code
and store the key shares along with the shares
of the data. The key are of sufficient length that
even if � � � key shares are known to the adver-

sary, the remaining key space is large enough
to provide the equivalent of a large key. To re-
construct, the client obtains � key shares and
reconstructs the key, and then obtains � data
shares and uses the key to decrypt them, and
then reconstruct.

Our approach is similar to one proposed by
Herlihy et al. [10]. In our protocol, however,
the keys are stored and reconstructed using the
same mechanism as the shares, and we use a
long key rather than a threshold scheme in or-
der to prevent partial discovery of the key from
a few of the shares.

4 The Cost of DISP

In this section we analyze the cost of DISP
in terms of computation, number of messages,
and total size. For this analysis, we assume that
the DISP domain has � � � � � � servers
(of which as many as � � � � � may be
Byzantine) and we are using an

� �
����� -IDA
code with a quorum size of � � � . If the
length of the data object is

�
, the length of each

IDA share will be
��� � , so the total size of the

shares is
� � � � � � ��� � � � �

.

The encryption, decryption, and fingerprint-
ing steps are all

� � ��� � � and so the cost of

www.manaraa.com

these steps for all of the shares together is pro-
portional to

� �
. The IDA calculation, however,

takes time proportional to
� � � � for each of the� � ��� shares, and thus the total amount of

time required to compute the value of all of the
shares is proportional to � � � � � ���	� � �

, and
the time necessary to perform reconstruction is
� �

.

We have considered using different erasure
codes in DISP in order to reduce the share
computation overhead. Tornado codes are par-
ticularly promising, because of their relatively
low computational requirements, and they have
proven suitable for at least one DISP-like ap-
plication [3]. For small values of � , however,
IDA still performs reasonably well and lends it-
self to efficient implementation.

The total size of the check vectors is pro-
portional to ��� � � � � � � ��� , because each
check vector contains the fingerprint of every
share. For very large domains the size of the
check vectors is a problem, but when � is rea-
sonably small (i.e. � � � �) and

�
is more than

several kilobytes, the shares constitute most of
the data transferred by the protocol, and there-
fore the expected quantity of data transferred
is only marginally more than

�
for reading

and
� �

for writing. Even when there are fail-
ures, the quantity of data transferred for read-
ing is near

�
because of the block-oriented

check-vectors: when a bad block is discovered,
the reader can immediately terminate the trans-
fer from the corresponding server and begin a
transfer (beginning at the same block) from an-
other. If the reader keeps track of which servers
have provided bad blocks, the worst case is
that each of the � Byzantine servers provides
one bad block and then is ignored for the rest
of the read operation. In this case, the reader
has to read � � � extra blocks. If � is the
size of each block, then this gives a total of

� ��� � � ��� � . If
�

is large and � and � are
reasonably small, this value is close to

�
. In

the worst case, � is equal to the share size, and
� ��� � � � � � � � � � ��� � � � � � � � � � �

.

In the expected case, the write protocol re-
quires one message exchange for the first step
and

� � � � messages for each of the other
two, for a total of � � ��� . Similarly, the read
protocol requires one exchange in the first step
and

� � in the second (� exchanges to gather
the � � � check vectors, followed by �
exchanges to gather the shares), for a total of� � � � . In the worst case (when the client
must contact the maximum number of servers
per round in their search for a sufficient number
of correct servers), a write may require � � � �
exchanges and a read may require � � � � .

An obvious optimization is to permit several
operations to be piggy-backed in the same ex-
change; for example, combining the request to
write a share of an object with the request to
commit a share from another. Our implemen-
tation optimistically requests the share at the
same time it requests the check vector for the
share. This means that it may waste time trans-
ferring corrupt shares, but in the absence of
failures the total number of message exchanges
necessary for reading is reduced to � ��� .

5 Applications of DISP

DISP is a family of protocols and permits the
writer to choose which IDA code and which se-
curity and fault-tolerance options they desire on
an object-by-object basis. This permits appli-
cations or system integrators to tailor DISP for
their needs. In this section we outline several
possible applications for DISP, and describe
how DISP might be tuned for each.

Widespread Data Availability with Integrity:
DISP can be used as the infrastructure for

www.manaraa.com

a system such as LOCKSS [15], whose
goal is to disperse information in such
a manner that it remains available and
correct, even in the face of coordinated
attacks [15]. For this application, a
(1,*)-IDA code with check vectors and
a modest quorum size is appropriate.
This would ensure that there are many
complete copies of each object and that
each reader gets a correct copy.

Fault-Tolerant SAN: DISP can be used as the
basis of a fault-tolerant SAN constructed
out of commodity hardware. In this case,
a (2,N)-IDA code would permit access to
the data as long as at least two servers are
functional. If the SAN is on an isolated
network and all servers are trusted, then
encryption of shares and messages can be
omitted, increasing the potential through-
put of the system considerably.

Media or Archival Servers: A variation of
the fault-tolerant SAN is a pool of me-
dia or archival servers. By distributing
the shares among a large pool of servers,
we can do load balancing (and provide
a degree of fault tolerance) without con-
suming excessive storage. For example,
imagine that we have four movies stored
on four servers. If each server stores one
movie, then the server with the most pop-
ular movie may be overwhelmed while the
others are idle. If the movies are dispersed
via a (4,N)-IDA code, however, the load
on each server will be equal no matter
which movie is the most popular.

6 Performance Results

Our current implementation of DISP is writ-
ten entirely in C and uses a home-grown RPC
toolkit. We use SHA-1 to compute our check

vectors, Blowfish for share encryption, and
the OpenSSL implementation of SSLv3 (using
RSA keys and RC4) for secure, authenticated
communication.

DISP places no limitation on the number of
servers nor the number shares necessary to re-
construct, or on which IDA codes are available.
In our prototype, however, we chose to limit
the number of servers per domain to 16, and
we have only implemented three IDA schemes:
(1,256)-IDA, (2,256)-IDA, and (4,256)-IDA.
We use a fixed block size of 16K for share
storage and check vector calculation. With a
blocksize of 16K, the per-block overhead of the
check vectors and key shares is less than 5%.

6.1 The Testbed

Our test client has a Pentium-III Xeon CPU
running at 1.8GHz and a Alteon AceNIC gi-
gabit copper Ethernet NIC. The test servers
are a variety of Pentium-III machines with
CPUs running at speeds ranging from 1.0GHz
to 1.8GHz. All of the servers have an Intel
PRO/1000 copper gigabit Ethernet NIC. The
computational demands on the servers are rela-
tively modest; the bottleneck for the servers is
how fast they can read and write to their disks
and communicate via SSL.

All the clients and servers run FreeBSD
4.8p13. We use gcc version 3.3.2, which gen-
erates significantly faster code than the default
gcc (2.95.4) provided with FreeBSD 4.8.

6.2 Benchmark Results

Table 1 shows the throughput of the read pro-
tocol for several combinations of the proto-
col options. Performance is given as the av-

www.manaraa.com

Protocol Options IDA Code
Secure Check Share (1,*) (2,256) (4,256)

Communications Vectors Encryption MB/s MB/s MB/s

No No No 47.6 52.8 36.3
No Yes No 30.4 25.7 21.1
No No Yes 15.4 14.0 12.5
No Yes Yes 11.8 10.9 10.0

Yes No No 17.0 16.0 13.8
Yes Yes No 13.3 12.1 10.8
Yes No Yes 9.4 8.7 8.0
Yes Yes Yes 7.9 7.4 6.9

Table 1: The effect of protocol options on read performance for three different IDA codes. The
(1,256) is equivalent to mirroring; each share is an exact copy of the original data. For the (2,256)
code, any two shares suffice to reconstruct the data, and for the (4,256) code, four shares are
sufficient. Throughput is given as the average speed in MB/s for ten 100MB transfers. (The
standard deviation for each average is less than 0.2 MB/s.) The time recorded for each transfer
includes the time needed to establish the connection between the client and the number of servers
necessary for each protocol. The quorum size � �
� for the check vectors and share encryption.

erage speed in MB/s for ten 100MB transfers.
The time measured for each transfer includes
the time necessary to establish the connection
and perform mutual authentication between the
client and the servers. It does not include the
time necessary to read the data from disk; we
warm the cache with the contents of the shares
before starting each benchmark. If we did not
warm the cache, experience has shown that
throughput would be limited by the speed of the
slowest disk among our servers.

The fact that the (2,256) code runs more
quickly than the (1,*) code in the first row of
the table is not a fluke, but is an artifact of the
testbed systems. In these two tests, almost ex-
actly the same amount of data is transferred, but
due to the limitations of our hardware and de-
tails of TCP flow control, it is possible for the
client to read data from two hosts slightly more
quickly than from one. This quirk is visible
only because the network is the bottleneck for
this particular situation. Our implementation

uses several threads to pipeline the process of
gathering share blocks and performing recon-
struction; while one set of share blocks are be-
ing read from the network, other share blocks
are being reconstructed. For these two cases,
share reconstruction is faster than the network.
In all other cases, as the computation increases,
throughput drops.

Although the CPU in our testbed client is not
particularly fast by contemporary standards, it
is network-limited on a gigabit network for
some tests. Even our slowest benchmark, at 6.9
MB/s, is within a factor of two of saturating a
100Mb/s link.

Performance drops when check vectors are
enabled, but drops even more precipitously
when share encryption and point-to-point se-
cure communications are enabled. The high
cost of encryption and SSL communication has
been noted by other researchers [2]. We see
no solution except the availability of faster ci-

www.manaraa.com

phers and message digests, or better implemen-
tations, perhaps in hardware, of the the corre-
sponding algorithms. The important point is
that the IDA share reconstruction is fast enough
on contemporary processors that the overhead
of using IDA is dwarfed by the apparently un-
avoidable overhead of secure communication.

The time needed for the IDA computations
and the time required by the data transfer for
the write protocol is proportional to the time
required by the read protocol; if the writer pre-
pares and writes � shares, then the time re-
quired by these steps is roughly � � � � where
� is the number of shares needed to recon-
struct and � is the time required by the read
protocol. The total time required by the pro-
tocol, however, is influenced by the amount of
time that the server requires to write the shares
to disk.

7 Related Work

Many of the ideas presented in this paper are
not new; there has been a great deal of work on
efficient and fault-tolerant data storage. Garay
et al. and Alon et al. describe systems that
share many of the characteristics of DISP [1, 8].
Both of these systems use protocols and encod-
ing schemes that are significantly more com-
plex than DISP. Both schemes have desirable
properties, but it remains to be seen whether
these protocols can actually be implemented in
a practical manner.

DISP addresses many of the same issues as
contemporary P2P systems such as OceanStore
[12] and CFS [4], but differs in several cru-
cial ways. First, DISP is not P2P, nor global
in scale. Unlike DHT-based schemes that al-
locate resources in a pseudo-random manner
across the entire set of machines in the system,

we expect that the DISP world will be divided
into many federated domains. Second, in DISP
the client coordinates the activities of servers
acting on its behalf, and there is no server-to-
server communication. In the OceanStore pro-
tocol, a client communicates with the system
via a single server, which in turn communicates
with other servers via a Byzantine agreement
protocol.

Weatherspoon et al. [17] provide an inter-
esting comparison of erasure-replication versus
copy-replication in terms of cost and failure
modes. Weatherspoon identifies strengths and
weaknesses of both kinds of replication, and
supports our argument that DISP should pro-
vide seamless support for both in order to sup-
port as many applications as possible.

8 Conclusion

DISP is a practical, flexible and easy-to-
implement protocol with good performance
and fault-tolerance characteristics. It is sim-
ple (and therefore easy to analyze, implement
and optimize) yet provides strong guarantees
about data availability and integrity. DISP’s
flexibility follows from the fact that the clients
choose the IDA code used to represent each ob-
ject and the quorum size necessary for recon-
struction, so they can make trade-offs between
the total storage necessary to represent an ob-
ject, the speed with which the object can be re-
constructed, and the number of server failures
the object can survive.

Future Work

We plan to port our prototype to a standard
secure-RPC framework (instead of our home-

www.manaraa.com

grown library), and then restate our protocol
in terms of this framework so that it can be
implemented in a portable manner. At that
point we will release both the full specification
and our reference implementation as an open-
source project.

References

[1] Noga Alon, Haim Kaplan, Michael Kriv-
elevich, Dahlia Malkhi, and Julien P.
Stern. Scalable Secure Storage when Half
the System Is Faulty. In Automata, Lan-
guages and Programming, 27th Interna-
tional Colloquium, ICALP 2000, pages
576–587, July 2000.

[2] George Apostolopoulos, Vinod G. J.
Peris, and Debanjan Saha. Transport
Layer Security: How Much Does it Really
Cost? In Proceedings IEEE INFOCOM
’99, The Conference on Computer Com-
munications, Eighteenth Annual Joint
Conference of the IEEE Computer and
Communications Societies, pages 717–
725, March 1999.

[3] John W. Byers, Michael Luby, and
Michael Mitzenmacher. Accessing Mul-
tiple Mirror Sites in Parallel: Using Tor-
nado Codes to Speed Up Downloads. In
Proceedings IEEE INFOCOM ’99, The
Conference on Computer Communica-
tions, Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Commu-
nications Societies, pages 275–283, New
York, NY, USA, March 1999.

[4] Frank Dabek, M. Frans Kaashoek, David
Karger, Robert Morris, and Ion Sto-
ica. Wide-Area Cooperative Storage
with CFS. In Proceedings of the 18th
ACM Symposium on Operating Systems

Principles (SOSP 2001), pages 202–215,
Chateau Lake Louise, Banff, Alberta,
Canada, October 2001.

[5] Daniel Ellard, James Megquier, Lori Park,
and Nina Yuan. The INDIA Protocol -
Project Report. Technical Report TR-25-
97, Harvard University DEAS, 1997.

[6] Armando Fox and Eric A. Brewer. Har-
vest, Yield and Scalable Tolerant Sys-
tems. In Proceedings of the Seventh Work-
shop on Hot Topics in Operating Systems,
pages 174–178, 1999.

[7] Armando Fox, Steven D. Gribble, Yatin
Chawathe, Eric A. Brewer, and Paul Gau-
thier. Extensible Cluster-Based Scalable
Network Services, October 1997.

[8] Juan A. Garay, Rosario Gennaro, Cha-
ranjit S. Jutla, and Tal Rabin. Secure
Distributed Storage and Retrieval. Theo-
retical Computer Science, 243(1–2):363–
389, 2000.

[9] Simson L. Garfinkel and Abhi Shelat. Re-
membrance of Data Passed: A Study of
Disk Sanitization Practices. IEEE Dis-
tributed Systems Online, 4(2), 2003.

[10] Maurice Herlihy and J. D. Tygar. How
to Make Replicated Data Secure. In
CRYPTO ’87, pages 379–391, August
1987.

[11] Hugo Krawczyk. Distributed Fingerprints
and Secure Information Dispersal. In
Proceedings of the 12th ACM Symposium
on Principles of Distributed Computing,
pages 207–218, Ithaca, New York, USA,
August 1993.

[12] John Kubiatowicz, David Bindel, Yan
Chen, Steven E. Czerwinski, Patrick R.

www.manaraa.com

Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean C. Rhea, Hakim Weath-
erspoon, Westly Weimer, Christopher
Wells, and Ben Y. Zhao. OceanStore:
An Architecture for Global-scale Persis-
tent Storage. In ASPLOS-IX Proceedings
of the 9th International Conference on
Architectural Support for Programming
Languages and Operating Systems, pages
190–201. ACM, November 2000.

[13] Sean Quinlan and Sean Dorward. Venti:
a New Approach to Archival Storage. In
Proceedings of the FAST ’02 Conference
on File and Storage Technologies, pages
89–101, Monterey, CA, January 2002.

[14] Michael O. Rabin. Efficient Dispersal of
Information for Security, Load Balancing,
and Fault Tolerance. Journal of the ACM,
36(2):335–348, 1989.

[15] David S. H. Rosenthal and Vicky Re-
ich. Permanent Web Publishing. In
Proceedings of the Annual USENIX
Technical Conference, FREENIX Track
(FREENIX’00), pages 129–140, June
2000.

[16] Adi Shamir. How to Share a Secret. Com-
munications of the ACM, 22(11), Novem-
ber 1979.

[17] Hakim Weatherspoon and John Kubia-
towicz. Erasure Coding versus Repli-
cation: A Quantitative Comparison. In
Peer-to-Peer Systems, First International
Workshop, IPTPS 2002, pages 328–338,
March 2002.

